ms在大气层内进行空中作战的时候,其本身具备比战斗机更高的机动性,借助a系统以及分布在周身的众多的姿态制御用火箭,可以达到战斗机所不具备的惊人的高运动性。目前最先进的战斗机借助于推力矢量技术可以达到180°姿势变换所需时间只需要8秒的程度,但是对于s的180°姿势变换所需时间只需要1。7秒。
或许很多人认为战斗机的正面投影要比ms要小,其实这是一种极为严重的谬论。空战是三维立体式的作战,即使战斗机的正面投影要远远的小于s来说,战斗机的投影却是大到足以致命的程度。
对于大多数武器来说,正面的装甲都要比别处的装甲厚的多,这是基于核心保护的原理来制作的,因此如何将自身的最强的防御快速的指向敌人的火力发射的方向就是设计时所需要考虑的技术标准了。
所以如何在战斗中保持正面对敌以及快速的索敌攻击是驾驶员所需要考虑的,当然在空中的时候,ms的180度转向要远强于战斗机,这对于战斗机驾驶员来说是一个不好的消息。不过庆幸的是,这里是有着大气的存在。
在大气层内作战的时候,战斗机却有着一个比ms更好的优势,那就是速度。战斗机可以轻易的达到ms所无法达到的速度,同时单就加速度而言,也是要比ms强得多。
当你独自面对一架ms来说,应该以高速度进行一击脱离的战术,不断的在空中进行远程牵制,进行一击必杀式攻击,不要试图向前和ms却无法对速度远超自身的战斗机进行准确的攻击,事实上即使借助优异的索敌系统,在距离超过十公里后,其命中率也将下降到极为恶劣的程度。
而如果是编队的话,应该同时使用六到八架战斗机进行全方位的火力封锁,记住应该是包括敌人的上下、左右以及前后,ms的运动性是十分惊人的,战斗机无法做到的空中悬停以及前后左右上下的自由移动,ms却可以轻易的做到的。而在这种完全覆盖的交叉火力封锁的情况下,ms是无法躲避战斗机的攻击。
但是这些也有着极为严重的缺陷,空气中所弥漫的那些可吸入颗粒物对于属于精密仪器的ms来说,是一个致命的打击。长时间的战斗会因为敌人的攻击而受到影响,那些在爆炸时候生成的颗粒物对于机械臂来说是一个致命的打击。
暴漏在空气中的机械臂的轴承的部位会因此而呈现出急剧的磨损。在战斗中的时候,前线的部队经常可以见识到敌人的ms在遭受到我军的炮火攻击后,即使是没有受到任何的损伤,也会有机械故障的问题出现,这就是因为恶劣环境的因素。
毕竟作为武器的载体而言,ms的结构要比那些传统的武器的结构复杂得多了,除非有良好的后勤保障,否则ms的出勤率将降低到一个无法忍受的地步。
而且同样的ms的造价以及驾驶员的训练都要比战斗机昂贵的多,而勤务效率却又远远比不上战斗机,同时对于后勤人员的补给将远远超过战斗机的需要,作为一项武器而言,并不是好的选择。
最后将分析s,ff-s3剑鱼宇宙战斗机以及基于作业用太空囊“sp-w03”而改造的太空用机动兵器“铁球”被制造出来与其对抗。
太空中是没有空气之类的阻力的,也正因此所以作为宇宙战武器可以制作成复杂形状而不会影响加速度,但是pēn_shè引擎的推重比始终是有限的,为了获得高机动性,在同样的pēn_shè引擎的作用下,武器的整体质量必然是被限制的。
如果说,在大气层内战斗机的设计是需要如何在有限的空间以及重量的限制下,达到最佳的空中机动的最佳效果的的话,那么宇宙战武器则是必须是在有限的质量限制下达到其本身可以发挥的极限性能。
需要注意的是,系统,而ff-bac系统,这是两者最大的区别。当然也因此ms所可以装载的推进剂要比宇宙战斗机以及“铁球”少得多。
aeautocontol缩写。事实上也就是动态质量自动平衡控制,是能够使包括s在内的许多机械在不需使用推进器的情况下,通过机械四肢精确的动作控制来完成宇宙中的姿势制御。其核心在于对平衡的控制。
a·y·这一技术所要解决的就是实现姿态的制御,换句话说,停止由于惯性带来的麻烦。
a以牛顿第三运动定律为基础,通过反作用力造成的惯性影响方向上的改变来起作用。再举个例子,如果我们让一个人处在摩擦力可以被忽视的自己的左手放在胸前,并用里朝外挥动,那么这一手臂动作所造成的惯性能够使这个人的整个身体做逆时针的旋转。如果这个人重复同样的动作,但是是由右手来完成的话,那么这个动作所照成的惯性能够将上一个动作的效果取消,使他停下来。
a系统就是通过这些反向动作来解除作用力带来的惯性影响,我们把这种动作叫做a机动。显然人类自身是很难做到“精确”的反向作用力,而a机动的关键正在于“精确”的解决。机师按照普通的方式控制机体,系统就能通过计算来确定a机动的角度、力度、速度,并自动作出反应。而且最重要的一点是:这种惯性解除动作,完全靠机动战士的肢体来完成,而不需要借助推进器。对机体的大部分部位来说,a机动是十分轻微和细小的,甚至肉眼不可见。而且a不会引起任何无旋的动作。
借助于